FFT Analysis on Coupling Effect of Axial and Torsional Vibrations in Circular Cross Section Beam of Steam Turbine Generators

نویسنده

  • Xiang Xu
چکیده

This paper presents a novel method to nonlinearly investigate the dynamics of the coupled axial and torsional vibrations in the circular cross section beam of the steam turbine generator using the FFT analysis. Firstly, the coupled axial and torsional vibrations of a beam are proved by equivalent law of shearing stress and different boundary conditions. Then, a nonlinear mathematical model of the coupled axial and torsional vibrations is established by the Galerkin method. Lastly, the fast Fourier transform (FFT) is employed to investigate the coupled effect of the beam vibration. A practical calculation example is calculated numerically and the coupled mechanism of the beam’s axial and torsional vibrations is analyzed in detail. The analysis results show that the frequencies of the coupled response would be existed in some special orders and the coupled response frequencies are smaller than the single vibration. Since for the first time the coupled mechanism of the beam’s axial and torsional vibrations is theoretically analyzed, the findings in this work may provide directive reference for practical engineering problems in design of steam turbine generators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration analysis of a rotating closed section composite Timoshenko beam by using differential transform method

This study introduces the Differential Transform Method (DTM) in the analysis of the free vibration response of a rotating closed section composite, Timoshenko beam, which features material coupling between flapwise bending and torsional vibrations due to ply orientation. The governing differential equations of motion are derived using Hamilton’s principle and solved by applying DTM. The natura...

متن کامل

Flexural-torsional stability of sandwich tapered I-beams with a functionally graded porous core

The present research deals with the flexural-torsional buckling analysis of sandwich web and/or flanges tapered doubly-symmetric I-beam. All section walls are composed of two metal face layers and a functionally graded (FG) porous core. It is assumed that the material properties of the porous core vary gradually in the longitudinal direction according to the simple power-law function considerin...

متن کامل

Simplified Approach for Torsional Analysis of Non-homogenous Tubes with Non-circular Cross-sections

In this paper a method is presented for torsional analysis of non-homogeneous tubes with arbitrarily shaped cross-sections. A previously presented method based on Bredt’s theory is extended to achieve formulas for torsional analysis. Shear modulus varies through the thickness according to a power law distribution. To validate the accuracy of the presented formulas for angle of twist and shear s...

متن کامل

Modal Testing and Finite Element Analysis of Crack Effects on Turbine Blades

The study of vibration response of a turbine blade helps to detect the crack presence in the blade which alters its dynamic characteristics. The change is characterized by changes in the modal parameters associated with natural frequencies. In this paper, study of vibration response is made for turbine blade in the presence of a crack like defect. Turbine blade is initially assumed as a cantile...

متن کامل

Drill string Vibration Modeling Including Coupling Effects

Abstract: The governing equations of motion for a drill string considering coupling between axial, lateral and torsional vibrations are obtained using a Lagrangian approach. The result leads to a set of non-linear equations with time varying coefficients. A fully coupled model for axial, lateral, and torsional vibrations of drill strings is presented. The bit/formation interactions are assumed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013